EMF. Induced field. Displacement current.

ACT: Two rings

Two copper rings with the same geometry move toward identical magnets with the same velocity as shown. The ring in case 2, though, has a small slit. Compare the magnitudes of:

the induced emf's in the rings:

C. $\varepsilon_1 > \varepsilon_2$

A. $\varepsilon_1 < \varepsilon_2$ EMF is independent of the actual ring. It would be the same for a wooden ring, or even in vacuum!

the magnetic force on the rings:

 $F_{2} = 0$

A. $F_1 < F_2$

No current in case 2 because ring is open.

$$B. F_1 = F_2$$

 $C. F_1 > F_2$

____ N 5 2

In-class example: AC generator

A coil of copper wire consists of 120 loops of wire wound around a 10 $cm \times 20$ cm rectangular form. If this coil is used to generate an induced emf by rotating it in a 0.3 T field at 60 Hz, what is the maximum emf that can be produced?

A. 33 V

$$\Phi_{B} = NB \times A$$
B. 43 V

$$= NBA \cos(\omega t)$$

- *C*. 120 V
- D. 217 V

$$\varepsilon = -\frac{d\Phi_{B}}{dt} = \omega NBA\sin(\omega t)$$

$$\varepsilon_{\max} = \omega NBA$$

$$= \left(60 \frac{\text{turns}}{\text{s}} \frac{2\pi \text{ rad}}{1 \text{ turn}} \right) (0.3 \text{ T}) (0.1 \times 0.2 \text{ m}^2)$$

$$= 271 \text{ V}$$

This is an AC generator!

 $\Phi_{B} = BA \cos(\omega t) \qquad \varepsilon = NBA\omega \sin(\omega t)$

AC generator

Water turns wheel

- ◊ rotates magnet
- \diamond changes flux
- \diamond induces emf
- drives current

DEMOs: Loop rotating between electromagnets

Hand-driven generator with bulbs

Eddy currents

Pull a sheet of metal through B-field

External force required to pull sheet because induced current opposes change. Current through bulk \rightarrow heating \rightarrow energy loss

Applications: Damping

Eddy currents induced in a copper plate when it passes near magnets. \bigcirc Low resistivity \leftrightarrow large currents

 \rightarrow Magnets exert force against motion \rightarrow Plate is slowed down

This effect does not "wear down" (like rubbing surfaces do). It is used as a brake system in roller coasters and alike.

To reduce eddy currents when undesirable, prevent currents from flowing (cutting slots or laminating material).

Metal detectors

- Pulse current through primary coil
 - B-field which changes with time
 - induces currents in a piece of nearby metal
- Induced currents generate B-field which changes in time
 - induces currents in coils of metal detector
 - sets off signal, alarm...

Back to the EMF

EMF of a battery (from Phys 221):

$$\varepsilon = V_{+} - V_{-} = -\int_{-}^{+} \stackrel{r}{E} \times \frac{r}{2} = \int_{+}^{-} \stackrel{r}{E} \times \frac{r}{2} + \frac{r}{2}$$

$$\varepsilon = \int \boldsymbol{E}^{\mathbf{r}} \times \boldsymbol{d}^{\mathbf{r}}$$

Motional emf

A loop moves towards a magnet
$$\Rightarrow$$
 a current is induced.

S N
$$(r)$$

Cause: Magnetic force on the moving charges in the loop: $\vec{F} = q\vec{v} \times \vec{B}$ Work: $W = \int \vec{F} \times d\vec{l} = \int q(\vec{v} \times \vec{B}) d\vec{l}$

If this was an electric force, the corresponding emf would be $\varepsilon = \frac{W}{q} = \frac{\int \vec{F} \times d\vec{l}}{q} = \int (\vec{v} \times \vec{B}) d\vec{l}$

Motional emf
$$\varepsilon = \int (v' \times B') dl'$$

Note: This does not come from an electric field.

ACT: E-field in an open circuit

What is the direction of the E-field in the moving conductor?

B constant with time

Force points left.

Positive charge accumulates at left end.

Electric field points right. But this a regular electrostatic E field produced by charges.

Induced electric field

A magnet moves towards a loop \Rightarrow a current is induced.

$$S N \rightarrow ($$

No magnetic forces involved. \Rightarrow There must be an (induced) electric field!

$$\varepsilon = \int \vec{E} \times d\vec{l} = -\frac{d}{dt} \int \vec{B} \times d\vec{A}$$

Changing B-field induces an E-field. No charges involved!!

Faraday's law links Eand B fields

Two types of Efields

- 1. E field produced by charges
 - Lines begin/end on charges
 - $\widetilde{N} = 0$ (on a closed loop)

 \Rightarrow Conservative electric field

- 2. E field produced by B field that changes with time
 - lines are loops that do not begin/end
 - $\tilde{N} = \varepsilon (\neq 0)$

 \Rightarrow Non conservative electric field

B decreasing with time curly E-field induced

Both types of E-fields exert forces on charges

Escher depiction of nonconservative emf

Charging capacitor

When the switch in the circuit below is closed, the capacitor begins charging. While it is charging, is there a current between the plates?

No.

Close up of the capacitor region:

But what is I decide to use this "bag" as the surface delimited by the loop? What is the current intercepting it??

Displacement current

There is not current, but there is a time-changing $E = \frac{q}{\epsilon_0 A}$ electric field between the plates: $\epsilon_0 A$

Maxwell proposed to complete Ampere's law with an additional "current": $I_{D} = \frac{dq}{dt} = \varepsilon_{0} \frac{d\Phi_{E}}{dt} \qquad \qquad I_{D} = \varepsilon_{0} \frac{d\Phi_{E}}{dt}$

$$\mathbf{N} \times \mathbf{d} = \mu_0 \left(\mathbf{I} + \mathbf{I}_{\mathbf{D}} \right)$$

 $\Rightarrow q = \varepsilon_0 A E = \varepsilon_0 \Phi_F$

In this case, we have $I_D = I$ between the plates.

r

E as a source of B fields

Time-dependent E fields are a source of B fields!

$$\mathbf{\tilde{N}}^{\mathbf{r}} \times \mathbf{d}' = \mu_0 \left(\mathbf{I} + \varepsilon_0 \frac{\mathbf{d} \Phi_{\mathcal{E}}}{\mathbf{d} \mathbf{t}} \right)$$

The complete picture

Maxwell's equations

$$\widetilde{N} \stackrel{r}{\models} \times d \stackrel{q}{=} \frac{q}{\varepsilon_0} \qquad Gauss's \text{ law for } E$$

$$\widetilde{N} \stackrel{r}{\models} \times d \stackrel{r}{=} 0 \qquad Gauss's \text{ law for } B$$

$$\widetilde{N} \stackrel{r}{\models} \times d \stackrel{r}{=} -\frac{d'\Phi_B}{dt} \qquad Faraday's \text{ law}$$

$$\widetilde{N} \stackrel{r}{\models} \times d \stackrel{r}{=} \mu_0 \left(\mathcal{I} + \varepsilon_0 \frac{d'\Phi_E}{dt} \right) \qquad Ampere's \text{ law}$$

In the absence of sources

The symmetry is then very impressive:

$$\vec{N} = 0$$

$$\vec{N} = -\frac{d\Phi_B}{dt}$$

This is 1/c² (speed of light in vacuum)!!!

There has to be some relation to light here...